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ABSTRACT 

Cervical spondylotic myelopathy is the most common spinal cord disorder in 

persons over 55 years of age in North America and perhaps in the world. Surgical options 

are broadly classified into two categories namely, anterior and posterior approaches. This 

study focuses on the posterior based approach (i.e. laminectomy or laminoplasty) which 

is considered when multiple levels of the spine have to be decompressed or when most of 

the cord compression results from posterior pathological conditions.  The external and 

internal behavior of the spine after laminoplasty and laminectomy has been evaluated 

using both experimental and computational methods.  

Computationally, a validated intact 3D finite element model of the cervical spine 

(C2-T1) was modified to simulate laminectomy and laminoplasty (open door (ODL) and 

double door (DDL)) at levels C3-C6. During flexion, after ODL the adjacent levels C2-

C3 and C6-C7 showed a 39% and 20% increase in the motion respectively; while no 

substantial changes were observed at the surgically altered levels. The percent increase in 

motion after DDL varied from 4.3% to 34.6%.  The inclination towards increased motion 

during flexion after double door laminoplasty explains the role of the lamina-ligamentum 

flavum complex in the stability of spine.  Compared to the intact model, laminectomy at 

C3-C6 led to a profound increase (37.5% to 79.6%) in motion across the levels C2-C3 to 

C6-C7. Furthermore, the changes in the von Mises stresses of the intervertebral disc 

observed after laminoplasty and laminectomy during flexion can be correlated to the 

changes in the intersegmental motions. 

An in-vitro biomechanical study was conducted to address the effects of 

laminoplasty (two-level and four-level) and four-level laminectomy on the flexibility of 

the cervical spine. Both two-level and four-level laminoplasty resulted in minimal 

changes in C2-T1 range of motion. For flexion/extension, two-level and multi-level 

laminoplasty showed an approximate 20% decrease (p>0.05) in the range of motion at 
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C4-C5 and C2-C3 respectively due to the encroachment of the spinous process into the 

opened lamina. The decrease was mostly observed in older specimens and specimens 

with adjacent laminae close to each other; thus leading to the encroachment of the 

spinous process into the opened lamina. Laminectomy resulted in a statistically 

significant (p<0.05) increase in the range of motion compared to the intact condition 

during the three loading modes. These results correspond well with the finite element 

predictions, where a four-level ODL and laminectomy resulted in a minimal 5.4% and a 

substantial 57.5% increase in C2-T1 motion respectively during flexion.  

Adaptive bone remodeling theory was applied to the open door laminoplasty 

model to understand the effect of the surgical procedure on the internal architecture of 

bone. Bone remodeling was implemented at the C5 vertebra by quantifying the changes 

in apparent bone density in terms of the mechanical stimulus (i.e. SED/density).  After 

laminoplasty, the increased load distribution through the bony hinge region led to the 

increased bone density during extension. This increased bone density could eventually 

lead to bone formation in those regions through external remodeling.  

The current study proved laminoplasty to be a motion preservation technique 

wherein the plates and spacer provided additional stability via reconstruction of the 

laminar arch while laminectomy can cause instability of spine especially during flexion. 

In the future, patient-specific finite element models that incorporate geometry-related 

differences could be developed to optimize the number of operated levels and to further 

explain the effect of surgical procedure on the unaltered levels.  
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To all those people who are suffering from spinal problems 
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Learn from yesterday, live for today, hope for tomorrow 
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CHAPTER 1: SIGNIFICANCE AND SPECIFIC AIMS  

The spine is a long, slender, flexible column with a large range of mobility. The 

three main functions of the spine are: 1) to protect the spinal cord, nerve roots and several 

other internal organs 2) to provide structural support and balance to maintain an upright 

posture, and 3) to provide flexibility. Typically, the spine is divided into four main 

regions: cervical, thoracic, lumbar and sacral. Each region has specific characteristics and 

functions. 

Cervical spondylotic myelopathy (CSM) is caused by degenerative disorders of 

spine. This spectrum includes neck-pain syndromes, radiculopathy and myelopathy. 

Proper imaging of the cervical spine is essential in the diagnosis, evaluation and 

preoperative planning for patients with cervical spondylotic myelopathy. It is generally 

accepted that an absolute anterior-posterior diameter of the spinal canal measuring less 

than 10mm presents a greater risk for the development of cervical spondylotic 

myelopathy [61].  

Operative management is generally indicated for patients with progressive 

neurological deterioration. Anterior and posterior approaches are effective in 

decompressing the spinal cord. The pros and cons of each approach based on the patient’s 

pathological conditions should be considered. Anterior cervical decompression and 

fusion (ACDF) and laminectomy are the traditional techniques widely used to 

decompress the spinal cord. However ACDF has been associated with several 

complications over the years such as graft failure, adjacent segment degeneration, and 

decrease in the rate of fusion with the increase in the number of levels [2-4]. Following 

laminectomy, several clinical studies reported loss of cervical curvature and development 

of clinical instability due to the loss of posterior structures [5, 6].  

Cervical laminoplasty is a posterior based surgical approach intended to relieve 

pressure on the spinal cord while maintaining the stabilizing effects of the posterior 
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elements of the vertebrae. It may be an excellent option to allow the spinal cord to heal, 

and reverse the symptoms. Since its inception, several modifications have been made to 

the basic theme of this procedure. Currently, surgical procedure of laminoplasty can be 

broadly divided into open door type and double door type. Open door laminoplasty 

(ODL) was originally developed by Hirabayashi [7,8] as a primary treatment for 

ossification of posterior longitudinal ligament. Once the lamina is opened and the spinal 

cord is decompressed, preventing restenosis is a primary concern. Hirabayashi used 

sutures to hold the lamina open. Although simple, it resulted in several cases of recurrent 

stenosis as the lamina closed into its preoperative position. Subsequently, various authors 

have described numerous techniques which include the use of titanium miniplates, 

spacers or blocks to stabilize the posterior elements in the open position [9,10]. Our 

earlier studies on single-level open door laminoplasty have shown increased sagittal 

diameter and spinal canal area using this technique [11]. The in vitro and computational 

studies done on a single C5 vertebrae provided the information on the loads taken by 

posterior bone before the failure of the laminoplasty construct [12]. The current study 

uses titanium plates and screws to hold the lamina in the open position for ODL and 

hydroxyapatite spacers (HA) for double door laminoplasty (DDL).  

Various authors compared multi-level laminectomy to laminoplasty via 

experimental studies to show the instability of spine after laminectomy [9,10,13,14]. 

However, most of the studies have been performed under lower moments and did not 

report the intersegmental motions after the surgical procedures.  

The current study was designed to look at the internal and external responses of 

the spine to laminectomy and the two types of laminoplasty procedures. 

1.1 Significance of the Current Study 

In 2008 the U.S. laminoplasty market was valued at $65.3 million, representing an 

increase of 9.5% over 2007. The market is predicted to continue growing over the 
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forecast period (2005-2015). Future growth will be driven by the advantages 

laminoplasty offers over its alternatives, most notably, that laminoplasty maintains spinal 

alignment and very often aids in preserving motion in the cervical region [15].These 

numbers serve as another motivating factor to examine closely the biomechanical impact 

of the surgical procedure. 

Although, in vitro and in vivo experiments give valuable data, little information 

can be obtained about the internal responses. Hence, a commonly employed technique to 

study the spinal biomechanics is through the construction of mathematical models and 

their solution using numerical methods (e.g. finite element method). Finite element 

methods have been demonstrated to be very useful in quantifying variables not directly 

measurable in experimental studies like local stresses, as they help in determining the 

effect a particular parameter on the resulting complex structures. The current study 

emphasizes simulating multi-level laminoplasty and laminectomy in a finite element 

model. Earlier studies that compared the two laminoplasty techniques have been mostly 

clinical in nature and hence have only looked at the differences pertaining to spinal canal 

area and range of motion. This is the first study looking at the differences in terms of 

flexibility and stress distribution in the implants, vertebral bodies and intervertebral discs. 

It is well known that the main aim of laminoplasty is to create a stable laminar arch to 

preserve the laminar opening. As hinge failure is a commonly encountered problem 

during laminoplasty, it is necessary to understand the process of bone remodeling post 

laminoplasty. The study aims at implementing a computer simulation method to predict 

changes in bone density distribution in accordance with Wolff’s Law. Most of the 

previous in vitro studies were conducted on C2-C7 spines under a moment of ≤1.5Nm 

using different experimental setups. In order to have a direct and robust comparison with 

our finite element studies, an experimental study was undertaken to study the 

multidirectional flexibility after multi-level laminoplasty and laminectomy under similar 

loading and boundary conditions.   
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1.2 Specific Aims 

The thesis is divided into six chapters. The second chapter of the thesis introduces 

cervical spinal anatomy, and discusses the operative management of the cervical 

spondylotic myelopathy. Thereafter, each specific aim is addressed separately in greater 

detail discussing the background, methodology, and the results. The last chapter of the 

thesis summarizes the findings of the current study and concludes with the ideas for 

related future research. 

The specific aims of the current study can be summarized as follows: 

 To extend the previously developed intact C2-C7 finite element model to include 

T1, thereby a detailed specimen-specific, validated three-dimensional (3D) finite 

element model of the cervical spine (C2-T1) was used. For better kinematic 

predictions following the surgical simulations, the model was also updated to 

2Nm. 

 To simulate two different laminoplasty procedures namely open-door, double-

door laminoplasty and laminectomy at C3-C6 levels of a C2-T1 finite element 

model. 

 To experimentally test cadaveric cervical spine specimens after laminoplasty (2-

level, 4-level) and laminectomy. 

 To predict the changes in the bone density by applying an adaptive bone 

remodeling theory to the open door laminoplasty model.  
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2.1.3 Ligaments 

The cervical spine also features a complex arrangement of ligaments to 

supplement its structure and mobility. Ligaments are uniaxial structures that are mostly 

effective in carrying loads along the fiber direction. They can resist tensile forces but 

buckle under compression. The key function of the ligaments is to allow adequate 

physiologic motion under different directions while limiting excessive motion to protect 

the spinal cord. The cervical spinal ligaments include mainly anterior longitudinal 

ligament (ALL)  and posterior longitudinal ligament (PLL) that line the anterior and 

posterior surfaces of disc and vertebral bodies respectively, the capsular ligaments (CL) 

that are generally oriented in a direction perpendicular to the plane of the facet joints, the 

ligamentum flavum (LF) that is a thick elastic connective tissue connecting the adjacent 

laminae together and interspinous (ISL) and intertransverse ligaments that pass between 

the spinous and transverse process respectively. 

2.1.4 Spinal Cord 

The spinal canal houses the spinal cord and is surrounded anteriorly by the 

vertebral bodies, intervertebral discs, and the posterior longitudinal ligaments; laterally 

and posteriorly by the bony vertebral arch; and posteriorly by the ligamentum flavum. 

The spinal canal changes in length due to physiologic flexion, extension, and lateral 

bending. Its effective cross-sectional area also undergoes changes with physiologic axial 

rotation and horizontal displacement. At the C1 level, the spinal cord occupies just one 

half of the canal. It occupies three quarters of the canal at the C5-C7 levels, however, 

which helps to explain why cervical spondylotic myelopathy (CSM) predominately 

occurs in the lower cervical spine [18]. 

2.2 Cervical Spondylotic Myelopathy 

Cervical spondylotic myelopathy is the most common spinal cord disorder in 

persons more than 55 years of age in North America and perhaps in the world [23]. As 
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the number of older persons in the United States increases, the incidence of CSM will 

most likely increase. Cervical spondylosis is a chronic degenerative condition of the 

cervical spine that affects the vertebral bodies and intervertebral discs of the neck as well 

as the contents of the spinal canal. There are three important pathophysiologic factors in 

the development of CSM: (a) static mechanical; (b) dynamic mechanical; and (c) spinal 

cord ischemia [24]. 

Static mechanical factors result in the reduction of spinal canal diameter and 

thereby compress the spinal cord and the associated nerve roots.  Many investigators have 

reported stenosis based on the diameter of the spinal canal from plain lateral radiographs 

[1]. With aging, the intervertebral disc loses its water content and elasticity, resulting in 

loss of disc height, cracks and fissures. The disc subsequently collapses as a result of 

biomechanical incompetence, causing the bulge in the annulus and nucleus sequestration. 

This process puts greater stress on the vertebrae and the respective end plates leading to 

the development of osteophytes that can project posteriorly into the spinal canal and 

markedly reduce the space available for spinal cord and its blood supply. Some of the 

other complementary changes include development of osteophytes in the facet joints, 

arches and thickening and ossification of posterior longitudinal ligament [18], further 

compromising the spinal canal dimensions and neural foramina (Figure 5). Symptoms are 

believed to develop when the spinal canal area has been reduced by at least 30 percent 

[25]. 

The contribution of dynamic mechanical factors in the development of CSM is 

related to the fact that the normal motion of the cervical spine may aggravate spinal cord 

damage precipitated by direct mechanical static compression. This is mainly observed 

during flexion and extension. During flexion, the spinal cord lengthens and stretches over 

ventral osteophytes whereas during extension, the ligamentum flavum may buckle into 

the spinal cord causing a reduction in the available space for the spinal cord (Figure 6). 
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and bone material causing spinal cord compression and thereafter, stabilizing the spine 

with autograft /allograft/ or titanium mesh cages with plate fixation (Figure 7). The main 

advantages of this approach are the ability to directly remove the majority of compressive 

pathologies encountered in the cervical spine (e.g., disc herniations, ventral osteophytes, 

or ossification of the posterior longitudinal ligament [OPLL]), and the ability to correct 

and decompress the cord over kyphotic lesions. The high success rate and long term track 

record of ACDF in the treatment of cervical spondylosis giving rise to radiculopathy or 

myelopathy raises the question for the development of alternate procedures. 

Although fusion has been proven to be a successful form of treatment at single 

level, fusion of a relatively mobile multiple segment is not an ideal reconstruction and 

can potentially lead to deleterious long-term iatrogenic effects [4]. Biomechanical studies 

have shown that spinal levels adjacent to a fusion experience increased intradiscal 

pressure, increased motion, high facets loads and higher shear stresses compared to 

normal [3,30]. Hilibrand et al. [2] reported the occurrence of adjacent segment 

degeneration at a rate of 2.9% per year after the initial operation, with a cumulative rate 

of 25% by 10 years. Further potential morbidities include the possibility of decreased 

cervical range of motion, pseudoarthrosis, graft donor site morbidity and 

instrumentation–related complications [31]. In an attempt to limit these deleterious 

effects associated with fusion, cervical disc replacement is an evolving technique that has 

been proposed as another option for the surgical treatment of degenerative spinal 

conditions. However, the multi-level application of the device is not yet known. To 

summarize, anterior based approach is considered when myelopathy is caused by anterior 

compression and only one or two levels are involved. 
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limited to the cases in which the overall sagittal alignment is favorable to cord drift-back 

[33].  

2.2.1.2.1 Laminectomy 

Cervical laminectomy is a standard procedure that has been employed for over a 

century to treat conditions of the cervical spine [34-36]. The earliest recorded use of 

laminectomy has been detailed by Sir Victor Horseley of University College London, 

who as early as 1887 used the posterior approach to decompress the cervical spine of a 

patient with progressive cervical spondylotic myelopathy [37]. By 1935, cervical 

laminectomies became commonplace procedures [38]. 

Decompressive laminectomy alleviates the pain and discomfort of nerve 

impingement by removing a small portion of the bone over the nerve root to provide the 

nerve root with increased space. The laminar arch along with the ligamentum flavum is 

removed to create more room for the spinal cord within the spinal canal. (Figure 8). 

However, the results of the procedure were universally unsuccessful with complications 

such as segmental instability, postoperative kyphosis, the vulnerability of the unprotected 

spinal cord, formation of the laminectomy membrane, perineural adhesions, and late 

neurologic deteriorations [5,6].  

2.2.1.2.2 Laminoplasty 

Because of the concerns over the complications of laminectomy, laminoplasty 

was developed in Japan in 1970s. It is considered an alternative to laminectomy, and is 

intended to relieve pressure on the spinal cord while maintaining the stabilizing effects of 

the posterior elements of the vertebrae. Being a motion-preservative technique, it 

eliminates fusion and its associated complications. 

Different techniques of laminoplasty have been described which vary by where 

the hinge and opening of the lamina are developed. They can be broadly classified into 

two types namely open door (ODL) and double door laminoplasty (DDL) (Figure 9). 
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observe any critical difference between the ACDF and laminoplasty groups with regard 

to the neurological recovery and cervical range of motion post 12 months; nevertheless, 

laminoplasty has the advantage of providing multilevel decompression simultaneously 

avoiding secondary myelopathy. Although the short-term results after 1 year look 

promising, long term results may help in demonstrating the superiority of one technique 

over the other. Few studies have shown contradicting results where anterior cervical 

decompression and fusion has best results for multi-level cervical radiculopathy 

compared to laminoplasty that resulted in significant reduction in motion during lateral 

bending and rotation. The etiology for this reduced motion may be due to the bone graft 

placement on the hinged side [43]. 
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CHAPTER 3: FINITE ELEMENT MODELS OF INTACT AND 

SURGICALLY SIMULATED CERVICAL SPINE 

Finite element analysis is an essential part of today’s engineering activities. The 

first application of finite element was reported in 1972 by Brekelmans et al. [44]. Since 

then the number of applications have grown enormously. The irregular geometry of 

vertebral bodies, complex nature of the disc, and facet contact between the adjacent 

vertebrae, all make the spine a very complex structure. Hence, an enormous effort has 

been put in over the years to generate accurate models that provide a true representation 

of the spinal behavior. The earliest two-dimensional model of the vertebral column was 

developed by treating vertebrae as rigid masses [45]. Later three-dimensional models 

using simplified representations of bone geometry, with planar posterior facet joints and 

identically shaped vertebrae were developed [46].  Many other models used geometrical 

structures generated using Computer-Aided Design (CAD) packages, while most of the 

current models are being developed using CT image data. 

 The models should be capable of predicting the stress distribution in the discs and 

vertebrae and give very detailed motion data. Today, the finite element method is an ideal 

tool to assess the biomechanical efficacy of surgical treatments while supplementing the 

in vitro and clinical studies. Recent years have seen vast growth in the development of 

patient-specific finite element models; hence efforts are underway to develop accurate 

subject-specific models of spine for the proper evaluation of spine problems. Following 

the model development, validation is of significant importance. The validity of the finite 

element models depends on the model input parameters namely, geometry, material 

properties, boundary and loading conditions.  
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3.1 Modification of the Existing Intact C2-C7 Finite 

Element Model 

In this study, a detailed subject-specific 3D finite element model of the cervical 

spine (C2-T1) was used. The vertebral bodies were segmented from the CT images of the 

cadaveric spine while the MR images provided the approximate boundaries of the 

intervertebral disc.  The model includes clearly defined annulus and nucleus regions, five 

major spinal ligaments namely anterior longitudinal ligament, posterior longitudinal 

ligament, ligamentum flavum, interspinous and capsular ligaments. Additionally, the 

facet gap was modeled using the tabular pressure-overclosure relationship in ABAQUS 

finite element software (Simulia, Providence, RI).Validation of the model is essential but 

extremely difficult due to the varying material properties along the length of the 

specimen. One of the best available methods for validation is to compare it with the 

experimental data under similar loading and boundary conditions. In this study, we 

extended our previously reported validated C2-C7 model [47,48] of the human cervical 

spine and presented a modified finite element model that provides more robust 

predictions of kinematic data after surgical simulations.  

3.1.1 Addition of T1 to C2-C7 model 

Although, the initial C2-C7 model was capable of predicting the spinal behavior 

correctly, in order to eliminate the boundary effects on the adjacent unaltered level (C7), 

T1 was added to the model. The external contours of T1 of the same specimen were 

segmented from CT slices using the Brains2, multipurpose image-processing software 

[49]. Thereafter the regions of interest were converted into a triangulated surface as 

explained elsewhere by DeVries et al. [50]. The resultant surface was meshed with 

hexahedral elements using multi-block meshing technique (IA-FEMesh).The meshing 

technique used is similar to the one described by Kallemeyn et al. [51]. The vertebral 

body was divided into cortical and cancellous regions and a Young’s modulus of 10GPa 
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3.1.2 Updating the Model to 2Nm 

As mentioned earlier, the original C2-C7 model was validated with the specimen-

specific experimental data in all the three loading modes at 1Nm.  However, when 

analyzing cervical spinal instrumentation, it is necessary to test the models at higher 

moments to induce measurable differences in motion response. Hence, the model was run 

under a physiologic non-destructive moment of 2Nm. 

The intervertebral disc is the major component of the entire model that deserves 

precise modeling due to its complex nature and has a significant effect on major 

rotations. The grounds substance of the annulus was initially modeled as linearly elastic. 

But with the original material properties, the model did not converge at higher moments 

and as a result, changes were made to the material definition. In order to account for the 

large motion resulting from higher moments, the material properties of the grounds were 

changed from linearly elastic to hyperelastic definition. Hyperelastic materials are 

described in terms of a “strain energy potential, which defines the strain energy stored in 

the material per unit of reference volume as a function of the strain at that point in the 

material. Material models predicting large-scale material deflection and deformations can 

be broadly classified into two types a) Incompressible (Mooney-Rivlin, Yeoh, neo-

Hookean, Ogden etc.) b) Compressible (Blatz-Ko, Hyperfoam).The posterior annulus 

may experience strains of up to 50% when in full flexion [53]. Such large strains require 

nonlinear analysis in the finite element solution. Moreover, the collagenous fibers in the 

disc have nonlinear behavior with the stiffness changing with increasing strain [54]. 

Therefore, we used the Mooney–Rivlin formulation, to allow computation of large 

displacements and strains.  

The hyperelastic definition of the annulus grounds was modeled using the 

isotropic, incompressible, hyper-elastic Mooney–Rivlin (c1, c2) formulation as described 

below [55]. 
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W= c1 (I1-3) + c2 (I2-3) +1/d (J-1)2,where  

c1, c2: Material constants characterizing the deviatoric deformation of the 

material 

I1, I2 : First/second invariants of the deviatoric strain tensor 

d = 2/K material incompressibility parameter, 

J = V/V0 local volume ratio and 

K = initial bulk modulus of the material. 

The initial shear modulus is given by (ABAQUS Documentation) 

G=2(c1+c2) 

Hence, the relationship between Young’s modulus ‘E’ and material constants c1 

and c2, for the annulus ground substance can be approximately written as: 

E ≈ 6 (c1 +c2) with c2 ≈ 0.25c1. 

The input parameters for ABAQUS are c1 and c2. Initial baseline properties were 

taken from literature and subsequently calibration was performed to validate the motion 

response with the experimental data. The final values of Young’s modulus at all the 

levels for all three regions of the intervertebral disc are provided in Table 1. Figure 11 

shows the intact C2-T1 finite element model. 

Table 1.Young’s Modulus of Annulus fibrosus for different levels 

Segment Anterior (MPa) Posterior (MPa) Lateral (MPa) 
C2-C3 4.2 2.25 3.5 
C3-C4 2.25 2.25 1 
C4-C5 1.5 1.5 1 
C5-C6 1.5 1 1 
C6-C7 1.5 1 2.25 
C7-T1 6 6 2.25 
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3.1.2.1 Boundary and Loading Conditions 

The intact model was tested under physiologic flexion/extension (±MX), right/left 

lateral bending (±MZ), and right/left axial rotation (±MY) modes. The inferior nodes of 

T1 vertebra were fixed in all directions and a pure moment of 2Nm was applied on 

superior surface of C2. The analysis was performed using the finite element software 

ABAQUS 6.9. 

3.1.2.2 Flexibility Testing  

The goal of the flexibility tests was to obtain three-dimensional physical 

properties of the spine under pure moments and measuring the intervertebral rotations. 

The main advantage of the flexibility test is that it captures the natural behavior of the 

spinal column by allowing complete freedom of movements. The tests also serve as a 

standardized comparison of biomechanical results among various researchers by 

measuring the capability of the spinal device to provide multi-direction stability under 

physiological loading conditions [56]. 

3.1.2.3 Validation of the Intact Finite Element Model 

In addition to the geometric and material complexities, validation of the finite 

element model is itself a challenge. Validation of a finite element model is crucial to 

correctly predict the biomechanical responses of spine to complex loading 

conditions.    Most of the reported validation studies have been undertaken by comparing 

it with multi-specimen experimental data. Any number of permutations of material 

properties in a finite element model would lead to the same overall stiffness, and hence 

emphasis should be placed on comparing as many parameters as possible. Since, a 

complete validation of a model is not possible due to the limitations involved in the 

physical measurement of all parameters, it must be viewed more as a representation of an 

in vitro model rather an absolute proof. Hence, there is a need to represent this in vitro 

environment more closely to the in vivo conditions.  
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The updated intact model was validated against subject-specific experimental and 

literature data. Most of the existing models in literature have been validated via only end 

points responses to applied moments [57-59]. Since the spine exhibits a complex 

nonlinear behavior due to the nature of the soft tissues involved, it is essential to look at 

the entire loading curve rather than just the end points.  

The model validation was divided into two parts. We first compared the C2-C7 

motion data of C2-T1 model with the subject specific experimental data in 

flexion/extension, right/left lateral bending, and right/left axial rotation for a moment of 

1Nm. The model was validated along the entire length of the loading curve rather than 

just the end points. The final calibrated model followed the experimental data extremely 

well during flexion/extension as shown in Figure 12. The red curves represent the loading 

and unloading cures for the experimental data while the blue triangular dots denote the 

finite element predictions for the C2-C7 motion in a C2-T1 model. 

During lateral bending, the finite element model predicted an approximately 14% 

lag in left and right lateral bending at the end points (Figure 13). The major difference 

between the experimental and finite element prediction occurred at the C3-C4 level. 

Although, the exact reason is not known, the unusually large amount of motion at this 

particular level during experimental testing may be due to the pathological changes at 

intervertebral disc and facet joints. 

There was a good agreement between the finite element predictions and 

experimental data during left/right axial rotation (Figure 14). The nonlinear behavior 

exhibited by the spine during the flexibility tests was well captured by the model. 

Because of the limited motion data pertaining to C2-T1 motion segments, we 

could compare the C2-T1 model data with the literature data in flexion/extension only. 

Figure 15 shows the comparison of the segmental motion at C7-T1 with the literature 

data in flexion/extension [60].  
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3.2.1 Background and Literature Review 

Post laminectomy kyphosis of the cervical spine has been associated with 

worsening myelopathy, debilitating postural deformity, and intractable pain. In a study 

done by Kaptain et al. [63], kyphosis was observed in 21% of patients who have 

undergone laminectomy for CSM with the progression of deformity twice as likely if 

preoperative radiological studies demonstrate a straight spine. Interestingly, the authors 

did not observe any correlation between postoperative kyphosis and functional outcome. 

Spontaneous dislocation or subluxation of cervical vertebrae can occur as a result of 

extensive laminectomy involving facet resection. The vertebral displacement may thereby 

result in progressive swan-neck deformity. This is more prominent in younger individuals 

due to the greater elasticity and laxity of cervical ligaments compared to old people. One 

of the other disadvantages with complete laminectomy is the vulnerability of the 

unprotected spinal cord and the instability of the spine due to the loss of posterior 

structures [64]. Baisden et al. [5] used a goat model to show the significant increase in the 

cervical kyphosis and sagittal plane slack motion at 6 months post laminectomy while no 

significant differences were observed with laminoplasty when compared to the intact 

groups. Hence, radiographic studies should be undertaken beforehand to determine if 

patients have sufficient lordosis to undergo laminectomy.  

Posterior stabilization technique involving facet fusion may prevent or treat 

instability. This could be achieved by using either lateral mass plates or pedicle screw 

fixation [65]. Heller et al. [66] did an independent matched cohort analysis between 

patients treated with laminoplasty and laminectomy with fusion. Laminoplasty group 

reported significant improvement in strength, dexterity, gait, pain with no major 

complications; while laminectomy with fusion resulted in complications such as 

progression of kyphosis and myelopathy, nonunion and instrumentation failure. In 

another comparative study between ACDF, laminectomy and laminoplasty; laminectomy 
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3.3 Open Door Laminoplasty in the Cervical Spine 

3.3.1 Background and Literature Review 

Until the 1970s, laminectomy has been the sole therapeutic option for posterior 

decompression of the spinal cord. However, the complications associated with wide 

laminectomy of the cervical spine led to the development of alternate posterior surgical 

procedures [67]. The open door laminoplasty procedure involves “hinging” one side of 

the lamina and cutting the other side to form a door. The side of the canal to be opened is 

chosen for a number of reasons. If subsequent foraminotomies are planned, the open side 

should be ipsilateral to them; in case of asymmetric myelopathy, the surgeon chooses to 

open the more involved side and finally the choice may also be influenced by the 

surgeon’s dominant hand [68].  A trough is prepared initially to remove all three layers of 

bone (dorsal cortex, followed by the cancellous layer and then the ventral cortex) along 

the junction of the lamina and the lateral mass. A hinge of approximately 3-4mm is 

created along the contralateral junction of the lamina and lateral mass by removing the 

dorsal cortex and the unicortical layer. The laminar hinge should yield slightly with a 

reasonable bending force. 

The number of lamina to be opened to fully release the spinal cord has always 

been a question, C3-C7 or C3-C6. In anatomical terms, Pal and Routal [69] demonstrated 

the significance of C7 in maintaining the stability of the cervical spine. Hosono et al. [70] 

compared the clinical outcomes of patients with C3-C6 and C3-C7 laminoplasty. The 

results favored C3-C6 laminoplasty in terms of postoperative axial neck pain, operating 

period, and length of the operative wound.  

Restenosis owing to postoperative closure of the lamina in laminoplasty is a well-

known complication. To decrease the incidence of this complication, several 

modifications to Hirabayashi’s original methods have been proposed including the use of 

anchor screws adjacent to facet joint on the hinge side and the use of bone graft spacers 
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complications and functional improvement in strength, dexterity, sensation, pain and gait 

[41,66].  

Achieving and maintaining an increased sagittal diameter after open-door cervical 

laminoplasty is probably one of the most important changes in anatomic parameters to 

facilitate neurological recovery. O'Brien et al. [75] reported 105% and 88.9% increase in 

the anterior posterior and sagittal canal diameter respectively after open-door 

laminoplasty with titanium plates. The worsening of cervical alignment was observed in 

approximately 35% and the development of kyphosis in 10% of patients who went for 

long term follow-up post laminoplasty. This development of kyphosis or loss of cervical 

alignment can be related to the extent to which the facet joint is disrupted and 

preoperative curvature of the spine [76].  

Several clinical studies have been performed to determine the cervical range of 

motion post laminoplasty. A two-year follow up study showed the gradual decrease in the 

range of motion during flexion/extension by 31.66%, but the rate of reduction slowed 

with time. Interestingly, no correlation was found between the postoperative axial pain 

and decreasing cervical range of motion. However, a positive correlation was observed 

with extension motion. Though the exact cause of this decreased range of motion remains 

unclear, spontaneous laminar fusion, degeneration of adjacent segments, posterior muscle 

condition could contribute to it [77,78]. A decrease in range of motion due to fusion at 

the hinge side may stabilize the spine and maintain favorable long-term results, while it 

may sometimes become a source of axial complaints. However, it is important to notice 

that most of the literature pertains to patients undergoing decompression for ossification 

of posterior longitudinal ligament which itself relates to increased rigidity, and thus may 

overestimate the restricted range of motion linked to laminoplasty procedure [79]. 

Contradicting to these clinical results, several in vitro studies have shown preservation of 

range of motion in all directions after multi-level laminoplasty [13,14]. 
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3.3.2 Simulation of ODL at Levels C3-C6  

The intact mesh (C2-T1) was modified to simulate a multi-level open door 

laminoplasty procedure. As an example, the procedure is explained clearly for the C5 

vertebra below. 
 

 A bicortical cut was simulated along the junction of the lamina and the lateral 

mass of the intact vertebral mesh by completely removing a layer of elements. 

Care was taken to preserve the facet surfaces. 

 On the contralateral side, a hinge of approximately 3-4mm was created along the 

junction of the lamina and lateral mass by removing elements representing the 

unicortical layer. The hinge was further smoothed with a cylinder using in-house 

code (C++) to simulate the shape of a burr. Care should be taken to prevent two 

things: Creation of the hinge too laterally or medially and removal of excessive 

bone. Figure 22 shows the vertebra with the hinge and open side of the lamina. 

 The choice of ligament resection for laminar opening varies with the surgeon and 

the technique. The spinous processes of the involved vertebrae (C3-C6) along 

with the interspinous ligaments were excised. Additionally, the ligamentum 

flavum at the adjacent levels (C2-C3 and C6-C7) was partially cut on the open 

side of the lamina to allow for the laminar opening.  

 The lamina of each vertebra, C3-C6, was opened towards the hinge by applying a 

uniform load until a laminar opening space (LOS) of 10mm was obtained as 

illustrated in Figure 23. Our previous studies on single level laminoplasty have 

shown an increase of 56% in spinal canal area and 35% increase in the sagittal 

canal diameter at level C5 [11].  During the surgical procedure, as the door is 

opened, stresses build in and around the hinge region. Consequently, the stresses 

at the centroid of each element were recorded to be used as initial conditions. 
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theoretical advantages like symmetrical expansion of the spinal canal, and the potential 

for posterior fusion with a bone graft bridge between the spinous process. Variations have 

been described to stabilize the lamina in the opened position and to re-create the posterior 

arch. The lamina are supported in the open position using sutures through the facet 

capsules and the lamina, suture anchors, autografts, HA spacers or plates [87,88]. Grafts 

or Spacers are held in space with either sutures or screws. Of all the available methods 

for stabilization, spacers are beneficial as they reduce the operating time and the 

intraoperative bleeding. 

Ueyama et al. [89] observed that the group with HA spacers effectively 

maintained the range of motion compared to the group with autogenous iliac grafts. 

While using the HA spacers, the authors recommended cutting the edge of spinous 

process without fracturing the lamina and taking proper care while pulling the suture 

thread to stabilize the spacer as it may destroy the lateral gutter. However, inadequate 

contact between the spacer and bone was one of the initial problems, resulting in the 

instability of the spacer and restenosis of the spinal canal. Hirabayashi et al. [90] 

investigated the shape of the widened space created by the split spinous processes during 

a double-door laminoplasty.  They concluded that the optimal shape of a spacer adapting 

to the resulting space is trapezoidal, in both the axial and frontal sections. The study also 

reported increased lateral deviation of the spinous process with the hinge than without the 

hinge; suggesting the importance of creation of hinge during laminar opening. Hence, 

most of the currently available spacers are trapezoidal in shape to accommodate the 

contour of the spinous process (Figure 29). Nevertheless, surgeons still use autogenous 

iliac bone graft for an unstable segment instead of a HA spacer, and bone chips on the 

bilateral gutters. Few others have considered using spacers made from the base of spinous 

process thereby avoiding harvesting bone blocks from the iliac crest and good bony union 

was observed using this technique [91].  
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myelopathy were maintained over 10 years in 78% of patients with OPLL and in most of 

the patients with myelopathy [98]. Goto et al. [99] reported the clinical outcome of a new 

surgical technique for cervical laminoplasty where the lamina on both the sides, spinous 

processes and various attached ligaments are removed. Trapezoid-spaced HA spacers are 

placed between the cut ends of the lamina and lateral masses bilaterally at each level. 

Malleable titanium mini plates and screws were used for fixation of the spacers. At the 

end of 12 months, fusion was seen around the HA spacers and spinal alignment and range 

of motion was well preserved. The spacers helped in reducing the force to miniplates and 

the malleability of miniplates reduced the force to which the screws are subjected.  

Puttlitz et al. [100] compared the kinetics after Open-door (ODL) and French door 

laminoplasty (FDL), where they noticed that both FDL and ODL resulted in significant 

decrease in the range of motion 6 months postoperatively. But, no significant differences 

between the two techniques were observed after 6 months. They also showed that ODL 

produces a significant reduction in motion 6 months postoperatively compared with the 

immediate postoperative condition. Hence, the authors recommended early physical 

therapy to preserve a more physiological pattern of cervical range of motion.  

However, currently there exists no computational study that compares the 

biomechanical effects of the two laminoplasty techniques. 

3.4.2 Simulation of DDL at Levels C3-C6  

The intact mesh (C2-T1) was modified to simulate a double door laminoplasty 

procedure at levels C3-C6. 

 Two bilateral hinges at the junction of each lateral mass and lamina were created as 

described for the single hinge of the ODL procedure (Figure 31). Hinges should not 

be too medial or too lateral as too medial may result in insufficient enlargement of the 

spinal canal, and too lateral makes opening the split lamina difficult and may also 

cause facet fusion.  
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3.5.2 Stress Distribution in the Cortical Bone 

To understand the iatrogenic changes that occur as a result of surgical procedures, 

the stresses in the cortical regions of the vertebral bodies were evaluated. The maximum 

von Mises stresses during the laminar opening (open and double door laminoplasty) was 

recorded in both the anterior and posterior cortical regions of the vertebral bodies. Figure 

36 shows the von Mises stress distribution in C3-C6 after the laminar opening. Compared 

to open door laminoplasty, the stress distribution in the vertebral bodies after double door 

laminoplasty was found to be more symmetrical. This is due to the splitting of the 

spinous process in the midline for DDL. The stresses recorded were also slightly higher 

with unilateral laminar opening than midline laminar opening.  Compared to the anterior 

regions, posterior regions of the altered levels (C3-C6) showed a marked increase in the 

stress after both open and double door laminoplasty. Figure 37 compares the maximum 

von mises stresses in the cortical regions of vertebral bodies after laminar opening.  

3.5.3 Stress Distribution in Laminoplasty Constructs  

The main objective of the laminoplasty technique is to hold the lamina in the open 

position without failure to successfully decompress the spinal cord. The laminoplasty 

constructs namely the screws and plates of ODL and the HA spacer of DDL were 

evaluated for their stability. During all the six loading modes, the von Mises stresses in 

the plate and screw were within the yield strength of the Ti implant i.e.917MPa. Figure 

38 shows the von Mises stress distribution in the plate where the maximum von Mises 

stress was approximately 250MPa.  

Figure 39 shows the von Mises stress distribution in the HA spacer with peak 

stresses at the corners due to the TIED contact constraint introduced in the model to 

stabilize the lamina. Nevertheless, the stresses within the spacer were within the failure 

strength and were found to be approximately 200MPa. 
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3.5.4 Flexibility Test 

The intact and all three surgically simulated models (ODL, DDL and 

laminectomy) were tested in flexion/extension (±MX), right/left lateral bending (±MZ), 

and right/left axial rotation (±MY). The inferior nodes of the T1 vertebra were fixed in all 

directions and a moment of 2Nm was applied on the superior surface of C2. The analysis 

was performed using the finite element software ABAQUS 6.9; enabling the 

biomechanical response of the intact, laminectomy, and both laminoplasty procedures to 

be compared.   The ranges of motion, stresses in the annular regions of the intervertebral 

discs, and the stresses in the cortical regions of the vertebral bodies were analyzed for all 

four models (intact, laminectomy, open door laminoplasty, double door laminoplasty).  

Figure 40 compares the percent changes in the C2-T1 range of motion after 

laminoplasty and laminectomy. The ODL and DDL resulted in a 5.4% and 20% increase 

in C2-T1 range of motion respectively, while the laminectomy resulted in a substantial 

57.5% increase in the C2-T1 motion during flexion, with only minimal changes in the 

other directions.  

The intersegmental motions in response to the six loading modes were compared 

following the simulated surgical procedures Figure 41.  During flexion, after ODL the 

adjacent levels C2-C3 and C6-C7 showed a 39% and 20% increase in the motion 

respectively; while no substantial changes were observed at the altered levels. The 

percent increase in motion after DDL varied from 4.3% to 34.6%.  Compared to the intact 

model, laminectomy at C3-C6 led to a profound increase (37.5% to 79.6%) in motion 

across the levels C2-C3 to C6-C7. During extension, the superior adjacent level C2-C3 

showed an increase in motion of 8.5% and 28.8% after ODL and DDL respectively. For 

left lateral bending, a decrease of 11.7% and 20.3% in motion was observed at the 

inferior adjacent level C6-C7 after ODL and DDL respectively. Similarly, left axial 

rotation resulted in 13.2% and 15.08% decrease in motion at C6-C7 after ODL and DDL 
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3.6 Discussion 

A C2-T1 validated finite element model of spine that is capable of providing 

robust kinematic predictions after surgical simulations was used in this study. Many 

experimental and very few finite element studies have been done in the past to look at the 

effect of single to multi-level laminectomy on the biomechanics of spine.   Kumaresan et 

al. [106] used a 3D validated finite element model of the lower cervical spine to study the 

biomechanical effects of single-level laminectomy with and without graded facetectomy. 

Results indicated that laminectomy led to increased motions and stresses on adjacent 

levels under flexion compared to other loading modes. In order to rule out the possibility 

of the effect of loading and boundary conditions on the results, Wan et al. [107] used a 

validated C2-C7 model with C5 laminectomy to show significant increase in the range of 

motion, intervertebral disc and cortical shell stresses at C4-C5 and C5-C6. Goel et al. 

[108] tested cadaveric cervical spines (C2-T2) after two-level laminectomy to observe a 

significant increase in the sagittal rotation. Ding et al. [109] used four human cervical 

spine specimens (C2-T1) to report a 15% increase in axial rotation after two-level 

laminectomy.  Clearly, most of the studies have shown instability of the spine post 

laminectomy which is very well seen in our model with an approximate 58% increase 

during flexion. The increased disc stresses seen at the altered and adjacent levels after 

multi-level laminectomy correspond well with the earlier biomechanical studies and may 

be clinically correlated to the process of disc degeneration. Since no facet injury was 

simulated in the current study, laminectomy did not have a major effect on lateral 

bending and axial rotation [110].  

In vitro studies performed on cadaveric cervical spines after open door 

laminoplasty which utilized either plates or sutures showed preservation of motion 

[9,10,13,14], while laminectomy resulted in an increase of 12% ± 9% in flexion and 17% 

± 13% in extension when compared to laminoplasty (Figure 43A) [13]. Nonetheless, 

most of the studies did not report the effect of the surgical procedures on intersegmental 
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rotations. Hence, to further augment/validate the current finite element results we 

performed in vitro studies on cadaveric cervical spines after multi-level laminoplasty and 

laminectomy at C3-C6. Open door laminoplasty stabilized with titanium miniplates led to 

insignificant (p>0.05) changes in motion while laminectomy led to a significant (p<0.05) 

increase in motion during the three loading modes [111]. As observed in the current finite 

element study, laminoplasty preserved the motion except for slight changes in the 

intersegmental rotations during flexion. Kubo et al. conducted an in vitro study after 

DDL where no significant differences in the external responses of spine were observed, 

but the intersegmental rotations showed an inclination towards increased motion at all 

levels (Figure 43B) [10]. The current DDL finite element model predicted an 

approximate 20% increase in C2-T1 range of motion, thereby explaining the role of 

lamina-ligamentum flavum complex in the stability of spine. 

This study has the general limitation associated with most of the previous studies 

where the effect of muscles on the stability of spine has been ignored. The resection of 

the spinous processes and interspinous ligaments is at the discretion of the surgeon and 

the laminoplasty technique employed. After open door laminoplasty, during flexion, the 

increased motion at C2-C3 and C6-C7 could be attributed to the resection of interspinous 

ligament and unilateral ligamentum flavum at those levels, while the resection of 

ligamentum flavum at the midline and interspinous ligaments from C2 to C7 after double 

door laminoplasty led to the increased motion at all the operated levels. The decreased 

motion observed during lateral bending after laminoplasty could be due to pre-stress in 

the ligaments that developed during laminar opening. The increased motion, annular 

stresses and cortical stresses seen after the surgical procedures could accelerate the 

process of degeneration and may result in the formation of osteophytes.   
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The current study showed laminoplasty as superior to laminectomy in terms of 

range of motion at the altered and unaltered levels. Finite element predictions suggest the 

preservation of range of motion after open door laminoplasty. It also addressed the role of 

ligaments in maintaining the stability of the cervical spine as extensive ligament resection 

could substantially affect the motion as seen after DDL. Significant changes in the von 

Mises stresses of the intervertebral disc were observed after laminoplasty and 

laminectomy during flexion and correlated to the changes in the intersegmental motions. 
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CHAPTER 4. EXPERIMENTAL TESTING OF CADAVERIC 

CERVICAL SPINE SPECIMENS AFTER LAMINOPLASTY AND 

LAMINECTOMY 

4.1 Introduction 

Posterior-based surgical approaches (i.e., laminectomy or laminoplasty) are 

considered when multiple levels of the spine are to be decompressed or when the source 

of the cord compression results from posterior pathological conditions [112,113]. A 

variety of laminoplasty techniques have been described and typically differ based upon 

the location of the “hinge” and the “opening” of the lamina.  Methods also vary in part in 

the manner of the laminar reconstruction following the laminoplasty and can be broadly 

classified into two types, namely open door and double door laminoplasty.  

A limited number of in vitro studies have been performed on cadaveric cervical 

spine specimens after open door laminoplasty and laminectomy. Moreover, there exist 

discrepancies in the literature regarding the type of stabilization technique used for ODL 

and the testing system itself. Nowinski et al. [9] used sutures for stabilization where the 

facet capsule was damaged. It has been shown that altering the facets affects the stability 

of the spine [110]. There is also lack of literature data on the segmental rotations. Such 

information helps determine the effect of the surgical procedure on the unaltered and 

altered levels. Most of these studies have compared the total range of motion and tested 

their spines under moments ≤1.5Nm. Animal models have also been used to evaluate the 

effect of laminoplasty and laminectomy on the biomechanics of the cervical spine 

[5,114].  

Moreover, little information other than experiential expertise exists regarding the 

number of lamina (C3-C7 or C3-C6) to be opened for complete decompression of the 

spinal cord. Pal and Routal [69] demonstrated the significance of C7 in maintaining the 

stability of the cervical spine. Hosono et al. [70] compared the clinical outcomes of 
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patients with C3-C6 and C3-C7 laminoplasty. The results favored C3-C6 laminoplasty in 

terms of postoperative axial neck pain, operating period, and length of the operative 

wound.  

The current chapter presents an experimental investigation, addressing the 

multidirectional flexibility of the cervical spine in response to both open door 

laminoplasty and laminectomy (LT_C3456) procedures. Both two-level (LP_C56) and 

multi-level laminoplasty (LP_C3456) procedures were considered.   

4.2 Materials and Methods 

4.2.1 Specimen Preparation 

Five fresh-frozen human cadaveric cervical spine (C2-T1) specimens (Mean Age 

± Standard Deviation: 70.5±15.16) were procured, thawed to room temperature, and 

denuded of all residual musculature, with care taken to preserve the intervertebral disc 

and supporting osteoligamentous structures. Each specimen was scanned using CT to 

ensure the absence of pathological defects. In preparation for mounting the specimens for 

testing, C2 and T1were potted using Bondo (Bondo Corp, Atlanta, GA). The transverse 

plane of the C4-C5 intervertebral disc was made horizontal while potting the specimens 

to represent the neutral position. The specimens were then wrapped in saline soaked 

gauze and placed in a labeled double plastic bag and kept frozen at -20C.  

4.2.2 Biomechanical Testing 

Flexibility of the spine is a measure of the physical characteristic of a spinal 

construct, where the motion of the vertebrae is measured in response to the applied load. 

There has been controversy surrounding the use of load-controlled or displacement-

controlled testing for measuring the flexibility of spine. While each has its own share of 

advantages, pure moment loading ensures that the load experienced by a specimen 

remains constant along its length independent of its geometry, motion or stiffness. One of 
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the major advantages of applying a pure bending moment is that it allows an unbiased 

comparison of the biomechanical properties of different spinal constructs [115]. 

4.2.2.1 Test Setup 

The different kinds of systems used to apply pure bending moments include 

suspended deadweights attached to the rods of loading frame or indirectly through the use 

of pulleys [116], cable driven systems where the forces are applied by cables driven over 

the pulleys [115,117] and spine simulators. [118-120] In a study done by Grassmann et 

al. comparing constrained and unconstrained testing system, it was observed that 

unconstrained setup allowing coupled motions resulted in the movement of spinal 

segments in a more physiologic manner [121]. Hence, more emphasis should be placed 

towards designing the testing systems in a way to reduce the artifacts that result in impure 

moments. 

Based on the advantages and disadvantages of the various available testing 

systems, we chose a servo hydraulic Materials Testing Machine (MTS) (858Bionix II, 

MTS Corporation, Eden Prairie, MN) retrofitted with 2 spine fixtures to apply pure, 

unconstrained multidirectional loads. As seen in Figure 44, the spine loading simulator 

consisted of 2 gimbals with a 6DOF load cell attached to the top gimbal. In our testing 

setup, the bottom gimbal acted as a slave and followed the motion of top gimbal to which 

the moments were applied. Preliminary studies on sheep cervical spines indicated large 

shear forces resulting from the fixed bottom gimbal. The resulting shear forces either led 

to impure positive or negative moments being generated for a given rotation. DiAngelo et 

al. [119] loaded the spine eccentric to the load axis of the actuator while allowing the 

shaft to move relative to the actuator, thus minimizing the shearing forces. Equizabal et 

al. [122] redesigned their fixed ring cable driven experimental apparatus with a sliding 

ring to avoid non-trivial anterior-posterior shear forces and non-uniform loading 

conditions. Hence, in order to account for this high shear forces in our testing system, we 
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added a passive XZ table below the bottom gimbal that would ultimately offset the high 

shear forces by translating in the required direction. 

On the day of testing, the specimens were thawed to room temperature and 

mounted to the servo hydraulic materials testing machine. Custom made rigid body 

sensors consisting of 3 infrared light emitting diodes (IREDs) were rigidly attached to the 

anterior of each vertebra and the upper and lower gimbals (Figure 44). The motion of the 

sensors was tracked with an optical motion capture system (Optotrak 3020, Northern 

Digital Inc., Waterloo, Ontario, Canada).  

4.2.2.2 Test Protocol 

Each test included pure moment loading (±2Nm) in flexion/extension, right/left 

lateral bending and right/left axial rotation at a loading rate of 4Nm/min.  To precondition 

the specimen and to minimize the viscoelastic effects, each loading cycle was repeated 

three times, with the data from the third cycle used for analysis.  The specimens were 

copiously moistened using 0.9% sodium chloride irrigation solution throughout the study.   

Subject to the aforementioned protocol, each specimen was tested in the following 

sequential order as shown in Figure 45: (a) Intact; (b) Laminoplasty at C5-C6 (LP_C56); 

(c) Laminoplasty at C3-C6 (LP_C3456); and (d) Laminectomy at C3-C6 (LT_C3456).    

In an effort to start each test from the same neutral position, surgeries were performed 

without removing them from the materials testing machine. 
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The percent changes after laminoplasty and laminectomy for the remainder of the 

paragraph are reported relative to the intact state. For flexion/extension, two-level and 

multi-level laminoplasty showed a 21% and 17% decrease (p>0.05) in the range of 

motion at C4-C5 and C2-C3 respectively. The percent increase in flexion/extension at the 

intersegmental levels (C2-C3 to C6-C7) varied from 14% to 34% approximately after 

laminectomy when compared to the intact condition. After two-level and multi-level 

laminoplasty, a 9% decrease (p=0.117) and 14% (p=0.6443) increase in lateral bending 

was observed at C4-C5 and C2-C3 respectively. The percent increase in lateral bending 

after laminectomy varied from 5% to 19 % in lateral bending across levels C2-C3 to C6-

C7. Axial rotation at C4-C5 decreased 7% (p=0.4329) after two-level laminoplasty. 

Multi-level Laminoplasty resulted in an increase in the axial rotation for levels C2-C3 to 

C6-C7. The percent changes in axial rotation after multi-level laminectomy diverged 

from 11% to 20% across the levels C2-C3 to C6-C7.  

4.4 Discussion 

Posterior surgical techniques such as laminectomy and laminoplasty allow 

decompression of the spinal cord by allowing the cord to drift posteriorly. Hence, such 

techniques are typically limited to cases in which the overall sagittal alignment is 

favorable to cord drift-back [33].  

Achieving and maintaining an increased sagittal diameter after cervical 

laminoplasty is probably one of the most important criteria to facilitate neurological 

recovery. Clinical studies on laminoplasty with titanium miniplates have demonstrated 

that the technique is a safe and reliable method for preventing progression of myelopathy 

with multilevel involvement [81,82,123]. Deutsh et al. [81] performed open door 

laminoplasty using a Titanium Mesh LP miniplate and screw system with a claw 

positioned on the trapdoor lamina and a flat plate on the lateral mass.   No intraoperative 

and postoperative complications were observed. Our earlier studies on single-level 
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laminoplasty have shown increased sagittal diameter and spinal canal area using this 

technique [11]. The in vitro and computational studies done on a single C5 vertebrae 

gave us the information on the loads taken by posterior bone before the failure of the 

laminoplasty construct [11,12]. In 2008 the U.S. laminoplasty market was valued at $65.3 

million, representing an increase of 9.5% over 2007. The advantages offered by 

laminoplasty over its alternatives, markedly, that laminoplasty acts as a motion 

preserving technique and maintains the spinal alignment will help in the future growth of 

the market [15].  Hence, with the increasing laminoplasty market; there is a need to 

critically evaluate the effect of these implants on the biomechanical stability of the spine. 

The number of levels to be operated varies from patient to patient and it depends 

on the number of stenotic levels. Hence, it is necessary to understand the biomechanical 

significance of decreasing/increasing the number of operated levels. The trough and 

hinge creation for laminoplasty can be technically challenging. Although extreme care 

was taken while opening the lamina, 20% (4 vertebrae) of the hinges broke at the 

lamina/lateral mass junction.  This may be secondary to the bony changes involved in 

acquisition and storage of cadaveric specimens or due in-part to the technique itself.  

Indeed, such hinge breakage may occur during a typical surgical procedure in-vivo.  

Despite this, the lamina was held open throughout the testing with the help of plates and 

screws on the contralateral (opening) side without need for plating of the broken (hinge) 

side.  No plate/screw failures or laminar reclosures occurred at any of the levels 

throughout the testing of these specimens.  

The range of motion data showed that both two-level and multi-level laminoplasty 

resulted in minimal changes while laminectomy resulted in a substantial increase in 

flexion and axial rotation. These results corroborate well with existing in vitro 

laminoplasty and laminectomy studies. Subramaniam et al. [13] performed open door 

laminoplasty and laminectomy sequentially on seven spines and tested them in flexion 

and extension. No significant difference in range of motion was observed between the 
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intact and laminoplasty specimens; however, compared to laminoplasty, laminectomy 

reported  an increased motion during flexion (12% ± 9%) and extension (17% ± 13%). 

Nonetheless, the study lacked the lateral bending and axial rotation data and the spines 

were tested to a moment of 1.5Nm. Nowinski et al. [9] showed the importance of facet 

joints on the stability of cervical spine as little as 25% resulted in a significant increase in 

the range of motion. However, open door laminoplasty where the lamina was stabilized 

with suture did not show significant difference in the range of motion except a marginal 

increase in axial rotation. Puttlitz et al. [100] studied the temporal and longitudinal effects 

of laminoplasty in a caprine model. Both two-level and multi-level laminoplasty 

demonstrated a statistically insignificant decrease in the motion post-operatively, while a 

significant decrease in the range of motion was noted at 6 months post-op. Baisden et al. 

[5] used a goat model to show the significant increase in the cervical kyphosis and 

sagittal plane slack motion at 6 months post laminectomy while no significant differences 

were observed with laminoplasty when compared to the intact group.  Several studies 

[9,114,124] have demonstrated instability of the spine post multilevel laminectomy which 

is evident in our current study with an approximate 20.9% increase in the flexibility 

during flexion/extension.   This statistically significant increase in motion is notable; 

nevertheless, a greater volume of specimens may be necessary to understand the 

implications of laminoplasty versus laminectomy on single segment motions with mutli-

level techniques.  

It should be noted that resection of the spinous process is optional during 

laminoplasty.  Some techniques remove the spinous process and interspinous ligaments at 

the operated segments, while others retain these structures.   Ultimately this is at the 

discretion of the surgeon.   Our decision not to resect the spinous process cranial to the 

two-level laminoplasty lead to encroachment of  the C4 spinous process with the opened 

C5 lamina during extension, thereby resulting in decreased motion at C4-C5; a similar 

trend was observed at C2-C3 after the multilevel laminoplasty. This decrease in the 
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motion was statistically insignificant and varied among the specimens. It was found to be 

more pronounced in older specimens and specimens with the adjacent laminae close to 

each other; thus leading to the encroachment of the spinous process into the opened 

lamina.   Moreover, both left lateral bending and left axial rotation demonstrated 

increased ranges of motion (18% and 10%, respectively) following multi-level 

laminoplasty. This inclination towards an increased range of motion after left lateral 

bending and left axial rotation can be attributed to opening the lamina on the left side, 

which involved limiting resection of the ligamentum flavum to the left side.   Future 

studies will address determining the optimal side for hinge placement and addresses the 

benefits and drawbacks of spinous process resection. 

4.5 Conclusion 

The current study proved laminoplasty to be a motion preservation technique 

wherein plates provided additional stability via reconstruction of the laminar arch while 

laminectomy can cause instability of spine. These kinds of in vitro studies help in 

understanding the effect of in vivo surgical procedures on the biomechanics of spine.  
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CHAPTER 5: APPLICATION OF ADAPTIVE BONE REMODELING 

THEORY TO CERVICAL LAMINOPLASTY 

5.1 Introduction 

The main aim of laminoplasty is to recreate a stable laminar arch that preserves 

the laminar opening. Restenosis owing to postoperative closure of the lamina in 

laminoplasty is a well-known complication. This may result either from hinge failure due 

to a greenstick fracture or due to a poor stabilization technique.  Hence, it is essential to 

understand the effect of laminoplasty on the internal architecture of bone and this can be 

best obtained by quantifying the bone remodeling response.  Clinical studies have shown 

that with the advent of rigid stabilization techniques (i.e. plates and screws) to hold the 

lamina in the open position, hinge failure has been the only primary concern in 

reconstructing the laminar arch [123]. Bone remodeling applied to cervical laminoplasty 

helps in answering certain clinical/biologic questions about the surgical procedure. For 

example, it helps determine the effect of this posterior based surgical procedure on the 

anterior vertebral bodies and hinge healing process. 

Any changes to the normal architecture of the bone may result in variations of 

normal stress patterns. As a result, bone may engage in the process of remodeling, 

thereby adapting itself to the exposed functional mechanical requirements; a principle 

universally known as Wolff’s Law. The purpose of this study is to apply an adaptive bone 

remodeling theory to the problem of hinge failure observed during laminoplasty. 

Numerical formulations of adaptive bone remodeling theory integrated with the finite 

element method are one of the common methods employed to study bone remodeling. 

Living bone is continually undergoing processes of growth, reinforcement and 

resorption. These processes are termed collectively “remodeling”. Bone remodeling can 

only take place by the activity of certain cells embedded in the matrix structure namely 

osteoblasts, osteocytes and osteoclasts. Mathematical models are based on the assumption 
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that mechanical load is sensed by osteocytes. These are then thought to stimulate the 

actor cells in the bone remodeling process. The actor cells, (namely osteoblasts and 

osteoclasts) organized in a basic multicellular unit [125] play a role in bone formation 

and bone resorption respectively (Figure 52). Under normal circumstances in the mature 

skeleton, bone resorption and bone formation are coupled. At any given remodeling site, 

bone formation predictably follows bone resorption such that resorbed bone is replaced 

with an equal amount of new bone. In summary, the bone remodeling cycle is initiated 

and orchestrated by osteocytes, and regulated by the crosstalk between osteoblasts and 

osteoclasts. 

5.1.1 Bone Remodeling Theories 

Frost made the distinction between internal and surface remodeling [125]. Internal 

remodeling is the resorptive and formative processes occurring within the space 

encompassed by periosteum and endosteum whereas surface remodeling occurs only on 

periosteal and endosteal surfaces. Literature presents several attempts made by various 

authors to quantify bone remodeling process. Significant amount of work has been done 

in the past to mathematically predict the bone formation and resorption. Finite element 

models serve as an ideal tool to accurately represent the internal mechanical load in terms 

of stresses and strains. Several authors have worked towards combining mathematical 

bone remodeling equations with the finite element models for quantitative predictions 

regarding bone formation and resorption [127-129]. All these mathematical models are 

based on the principle that bone remodeling is induced by a local mechanical signal that 

activates regulating cells to adapt accordingly by changing either the internal or external 

morphology (Figure 53). It is assumed that this stimulus is directly proportional to the 

local mechanical load in the bone that can be determined from the local stress tensor, 

local strain tensor or strain energy density. Apparent density or elastic modulus was used 
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Huiskes and coworkers used strain energy density (SED) as a signal that controls 

remodeling of the bone [128]. SED was defined as the strain energy per unit volume at 

any region inside a stress field that can be written as shown in Equation 3. 
 

1
U

2
ij ije s                 (3) 

sij:Local stress tensor 

eij:Strain Tensor 

The difference between the actual SED (i.e.S), and the site-specific homeostatic 

SED, (i.e.S0) was the driving force for internal and external remodeling. He later applied 

this remodeling algorithm to a two-dimensinal FE model of a square plate to observe that 

the orientation of trabeculae was in correlation with the external principal stresses [135]. 

It was postulated by Carter that under normal conditions, there is a physiologic band of 

activity where bone is relatively unresponsive to changes in loading history [127]. 

Applying this principle to the theory of adaptive bone remodeling, a lazy zone was 

introduced so that, certain threshold level is exceeded before the bone reacts. Weinans et 

al. [136] postulated the rate of change of apparent density of the bone at a particular 

location in terms of mechanical stimulus like strain energy density (SED) (Equation 4). 
 

B(S-(1+s) S0)                               S> (1+s) S0

0                                    (1-s)S0≤ S ≤ (1+s)S0

B(S-(1+s) S0)                               S< (1- s) S0

																																														 4   

 

B: Remodeling Rate 

S: Remodeling stimulating signal; S /   

s: Half width of lazy zone interval 

S0: Reference stimulating signal 

ρ: Density 
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5.2 Methods 

5.2.1 Finite Element Model 

 The previously validated subject-specific 3D finite element model of the cervical 

spine (C2-T1) was considered [137].  Image based material properties were initially 

assigned to each element defining the vertebrae based on the relationship between the CT 

Hounsfield units (HU) and apparent density ( 0.001 1) and between the density 

and the elastic modulus ( ; c 3790) [131].   

The intact C2-T1 finite element model was modified to simulate the open door 

laminoplasty procedure at levels C3-C6 [138].  The procedure has been described in 

detail previously in Chapter 3 of the thesis. 

5.2.1.1 Loading and Boundary Conditions 

The inferior nodes of the T1 vertebra were fixed in all directions. The model was 

subjected to a compressive load of 50N, and moments of 2Nm in flexion and extension 

respectively.  The loads were applied on the superior surface of C2.   Each loading 

condition was considered separately and the strain energy density (SED) for each element 

under the three loading conditions was then averaged; thereafter the bone remodeling 

algorithm was applied. The finite element analysis was performed in ABAQUS 6.9. 

5.2.2 Bone Remodeling Algorithm   

Bone remodeling was implemented at the C5 vertebra by quantifying the changes 

in apparent bone density in terms of the mechanical stimulus (i.e. SED/density).  Of the 

various available stimuli like stress, strain, strain energy density; SED, a physical 

quantity related to both rigidity and strength, was chosen as the signal sensed by 

osteocytes as it represents both stress and strain induced in bone. Moreover, being a 

scalar variable, it has the advantage of using a single remodeling coefficient as opposed 

to many coefficients [128].   
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a) Intact Model: The image based material properties were applied to the intact 

finite element at time ti=0.  The bone remodeling algorithm was applied to the C5 

vertebra to determine the intact optimal bone density distribution. The anterior and 

posterior regions of the vertebra were considered separately to avoid one being driven by 

the other [140]. The individual reference values (i.e., Sref, anterior and posterior) were 

calculated as the average SED value for all elements defining each region, for each of the 

three loading conditions.  Hence, a constant Sref was assigned to each of the anterior and 

posterior regions. The bone remodeling algorithm was implemented separately for the 

anterior and posterior elements until convergence was met.   

b) Laminoplasty Model: In order to predict the bone remodeling changes in 

response to laminoplasty, a site specific analysis was performed, initiating from the 

optimal intact configuration.  The optimized bone properties were assigned to the 

laminoplasty model at time tl=0.  Moreover, the optimal site-specific SED values from 

the intact model served as the reference values (Sref) for the laminoplasty model.  Hence, 

Sref was specific for each element. Bone remodeling was performed until convergence 

was met.  

5.2.3 Analysis 

Bone remodeling was evaluated by comparing the changes in the bone density 

before and after convergence in the regions of interest. The regions of interest include 

primarily the cortical and cancellous shells of the vertebral bodies and the laminar 

regions of the posterior parts of vertebra. 
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the highest value (1.73gm/cm3) of bone density and the blue color corresponds to the 

lowest value (0.01gm/cm3) of bone density.  

Figure 57A shows the initial density distribution of a C5 vertebra based on the CT 

measurements (ti=0). This model was run through the algorithm until convergence was 

met (Figure 57B and Figure 57C). This is the optimal state where no further change in the 

density distribution was observed. The superior and mid-sagittal view of the optimal 

density distribution of the C5 vertebra showed an increase in the density values in the 

antero-superior, mid-infero cortical and pedicle regions. No significant changes in the 

density values were observed in posterior elements. Moments of 2Nm in the sagittal 

plane resulted in a flexion of 49º and extension of 43º, while a compressive load of 50N 

resulted in 5º of flexion. Considering the three loading modes, the increased load during 

flexion resulted in increased bone density in the anterior regions. No differences in the 

C2-T1 motion were observed with bone remodeling.  

Compared to the intact model, the open door laminoplasy model resulted in a 

5.4% and 1.3% increase in motion during flexion and extension respectively. Figure 58A 

shows the intial density distribution (tl=0) in a C5 vertebra after ODL with the material 

properties from the optimized intact model. Bone remodeling algorithm was applied to 

this initial configuration of C5 vertebra until  convergence was met. The converged C5 

vertebra showed an increase in the density values at the hinge region and around the 

implants suggesting bone formation (Figure 58B). No signifnicant changes in the bone 

density were observed in the anterior regions of vertebral bodies. 
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shells while the cancellous regions demonstrated a decrease in the density. This is in 

accordance with the work done by other authors, where the center of the endplate and the 

region between the endplates were less dense compared to other regions of the vertebrae 

[141,142]. These changes in the internal structure of bone can be related to the external 

loads. After laminoplasty, the increased load distribution through the bony hinge region 

led to the increased bone density during extension. This increased bone density could 

eventually lead to bone formation in those regions through external remodeling. These 

results correspond to the radiographic findings obtained from axial CT scans where 

complete bony union was observed at the hinge region by the end of two years [143].  

Wienans et al.[144] compared quantitative adaptive bone remodeling theory to 

cross- sectional measurements of the canine femur after two years. They observed a good 

correlation in the morphology of the bone around femoral components of total hip 

replacements. Several other authors have successfully applied this theory in the area of 

hip replacement to predict stress shielding post implantation.  It has also been effectively 

used to optimize the material and design of an implant [136,139,145,146]. With the 

successful application of bone remodeling theories in hip studies, several researchers 

considered applying it to other areas of human body like the spine [142,147] and dental 

regions. 

The study has the general limitation associated with most of the finite element 

studies where the effect of muscles on the stability of the spine has been neglected. 

Because of the various approximations involved in the simulation of bone remodeling 

post laminoplasty, validation of these models is necessary. This can be performed by 

looking at the bone remodeling phenomena on a large scale to see if the predictions are 

similar to that obtained in reality or by comparing it with subject specific 

experimental/animal models [135]. Moreover, emphasis should be laid on testing these 

models under physiologic loading and boundary conditions and, by applying the 
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appropriate adaptive bone remodeling theory with a realistic representation of material 

properties of bone.  

This study concentrates on internal remodeling; however the changes in the 

internal bone density can be correlated to changes in the external morphology by nodal 

surface movement.  The current study shows that bone adaptation depends on the applied 

loading conditions and predicts changes in bone density to an altered stress/strain state. It 

can be concluded that adaptive bone remodeling theory can be applied to understand the 

process of bone remodeling following surgical simulations like open door laminoplasty. 

Future studies should consider correlating clinical data with subject-specific bone 

remodeling response. 
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CHAPTER 6: CONCLUSION 

Cervical spondylotic myelopathy is a medical condition caused by the narrowing 

of the spinal canal, possibly leading to the compression of the spinal cord or other nerve 

roots [76,148]. Surgical options can be broadly classified into two categories namely, 

anterior and posterior approaches. The optimal surgical approach to treat myelopathy has 

been the subject of considerable debate. While each has its own share of advantages, the 

posterior approach is preferable in cases of multi-level involvement and posterior 

pathological conditions [112,113].  

Laminoplasty techniques vary with type of laminar opening and hinge placement. 

Open door [7,8] and double door laminoplasty [86] , for example result in asymmetrical 

and symmetrical expansion of the spinal canal respectively. To date, numerous clinical 

studies [6,43,65,149] have been done to observe the effect of multi-level laminoplasty 

and laminectomy on the kinematics of spine. Very few in vitro studies have been 

performed and to our knowledge, this is the first computational study performed to 

compare the biomechanical response of the spine to multi-level laminectomy and 

laminoplasty. The current study employed both computational and experimental methods 

to understand the effect of laminoplasty and laminectomy on the operated and adjacent 

levels. Adaptive bone remodeling theory was also applied to determine the effect of open 

door laminoplasty on the internal bone density. 

A validated intact finite element model was modified to simulate the surgical 

techniques of open door, double door laminoplasty and laminectomy techniques. To 

closely mimic the in vitro/ in vivo situation, the initial stresses developed while opening 

the lamina for laminoplasty were fed back into the model as initial conditions. All the 

four models were tested in six loading modes to determine the ranges of motion, stresses 

in the intervertebral discs and the laminoplasty constructs. Open door laminoplasty 

preserved the total C2-T1 motion but predicted increased motion at the unaltered levels 
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(C2-C3 and C6-C7) during flexion. Double door laminoplasty showed an inclination 

towards increased motion at all the levels during flexion, thereby explaining the role of 

the lamina-ligamentum flavum complex in the stability of spine. Maximum von Mises 

stresses in the laminoplasty constructs were within the yield strength of the implants. 

Laminectomy resulted in a profound increase in range of motion at all levels during 

flexion. Significant changes observed in the annular stresses after laminoplasty and 

laminectomy during flexion correlated with the changes in the intersegmental rotations. 

In-vitro biomechanical study was conducted to address the effects of laminoplasty 

(two-level and multi-level) and multi-level laminectomy on the flexibility of the cervical 

spine. For the two-level laminoplasty during extension, the C4 spinous process impinged 

the C5 lamina, thereby resulting in decreased motion at C4-C5. This is attributed to the 

resection of spinous process only at the operated levels. Both two-level and multi-level 

laminoplasty resulted in minimal changes in ranges of motion while laminectomy 

resulted in a statistically significant increase in the range of motion compared to the intact 

condition during the three loading modes. The titanium miniplates used to stabilize the 

lamina in the open position provided the posterior stability by reconstructing the laminar 

arch while laminectomy can cause instability of spine. 

The experimental and computational studies allowed a direct comparison of 

flexibility among the intact and surgically simulated models. Both studies showed 

preservation of motion after open door laminoplasty and a significant increase in the 

motion after laminectomy. Finite element simulation predicted an increase in the motion 

at the unaltered levels (C2-C3 and C6-C7) after open door laminoplasty while the in vitro 

study on cadaveric specimens predicted a decreased motion at the superior unaltered 

level. The finite element simulations showed the significant role of ligaments in the 

stability of spine. On the other hand, it has to be noted that the decrease in the motion 

observed in the cadaveric spines was statistically insignificant and was not consistent 

among all the specimens. The decrease was mostly observed in older specimens and 
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specimens with adjacent laminae close to each other; thus leading to the encroachment of 

the spinous process into the opened lamina. Since, the finite element model was 

developed from a different specimen; these geometrical differences could not be taken 

into account.  

Stabilizing the lamina in the open position and re-creating the posterior arch is 

one of the primary goals of laminoplasty. The adaptive bone remodeling algorithm 

applied to open door laminoplasty predicted an increase in the bone density around the 

hinge region and the implants; thus predicting bone growth in those regions. 

6.1 Future Work 

The finite element model supplements in vitro studies in understanding the effect 

of the surgical procedure on the biomechanics of spine. Hence, more emphasis should be 

placed on finite element models mimicking the in vitro/ in vivo conditions. Future studies 

could incorporate muscle data into the finite element models.  To further evaluate the 

effect of the surgical procedure on each level, the finite element predictions could be 

correlated with clinical segmental data.  

Due to the limited availability of the specimens, the experimental study was 

restricted to only five specimens. To minimize the effect of age-, and geometry-, related 

differences on the flexibility of spines; more specimens will be needed to further evaluate 

the effect of surgical procedure on the unaltered levels. 

The main aim of the current study was to compare the laminoplasty technique 

with the traditional method of decompression that is laminectomy. It also aimed at 

evaluating the motion preservation technique in detail. Future studies could consider 

evaluating the biomechanical effects of laminectomy and fusion, another commonly 

employed posterior-based surgical technique.  

The current study successfully applied adaptive bone remodeling theory to 

simulate internal bone remodeling after open door laminoplasty. In the future, external 
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bone remodeling could be implemented to help determine the thickness of the bone 

growth. Additional loading scenarios (i.e. different magnitudes and directions) could be 

considered. More effort should be placed to relate HU values to density, and then with 

the mechanical properties of bone. Furthermore, emphasis should be placed on validating 

the bone remodeling theory and this could be best obtained by developing subject-

specific finite element models and comparing the results with the clinical data. 
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